Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Geometric locality is an important theoretical and practical factor for quantum low-density parity-check (qLDPC) codes that affects code performance and ease of physical realization. For device architectures restricted to two-dimensional (2D) local gates, naively implementing the high-rate codes suitable for low-overhead fault-tolerant quantum computing incurs prohibitive overhead. In this work, we present an error-correction protocol built on a bilayer architecture that aims to reduce operational overheads when restricted to 2D local gates by measuring some generators less frequently than others. We investigate the family of bivariate-bicycle qLDPC codes and show that they are well suited for a parallel syndrome-measurement scheme using fast routing with local operations and classical communication (LOCC). Through circuit-level simulations, we find that in some parameter regimes, bivariate-bicycle codes implemented with this protocol have logical error rates comparable to the surface code while using fewer physical qubits. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available November 1, 2025
-
We provide the first tensor-network method for computing quantum weight enumerator polynomials in the most general form. If a quantum code has a known tensor-network construction of its encoding map, our method is far more efficient, and in some cases exponentially faster than the existing approach. As a corollary, it produces decoders and an algorithm that computes the code distance. For non-(Pauli)-stabilizer codes, this constitutes the current best algorithm for computing the code distance. For degenerate stabilizer codes, it can be substantially faster compared to the current methods. We also introduce novel weight enumerators and their applications. In particular, we show that these enumerators can be used to compute logical error rates exactly and thus construct (optimal) decoders for any independent and identically distributed single qubit or qudit error channels. The enumerators also provide a more efficient method for computing nonstabilizerness in quantum many-body states. As the power for these speedups rely on a quantum Lego decomposition of quantum codes, we further provide systematic methods for decomposing quantum codes and graph states into a modular construction for which our technique applies. As a proof of principle, we perform exact analyses of the deformed surface codes, the holographic pentagon code, and the two-dimensional Bacon-Shor code under (biased) Pauli noise and limited instances of coherent error at sizes that are inaccessible by brute force. Published by the American Physical Society2024more » « less
-
Various realizations of Kitaev’s surface code perform surprisingly well for biased Pauli noise. Attracted by these potential gains, we study the performance of Clifford-deformed surface codes (CDSCs) obtained from the surface code by the application of single-qubit Clifford operators. We first analyze CDSCs on the 3×3 square lattice and find that, depending on the noise bias, their logical error rates can differ by orders of magnitude. To explain the observed behavior, we introduce the effective distance d′, which reduces to the standard distance for unbiased noise. To study CDSC performance in the thermodynamic limit, we focus on random CDSCs. Using the statistical mechanical mapping for quantum codes, we uncover a phase diagram that describes random CDSC families with 50% threshold at infinite bias. In the high-threshold region, we further demonstrate that typical code realizations outperform the thresholds and subthreshold logical error rates, at finite bias, of the best-known translationally invariant codes. We demonstrate the practical relevance of these random CDSC families by constructing a translation-invariant CDSC belonging to a high-performance random CDSC family. We also show that our translation-invariant CDSC outperforms well-known translation-invariant CDSCs, such as the XZZX and XY codes.more » « less
-
Shadow tomography is a framework for constructing succinct descriptions of quantum states using randomized measurement bases, called “classical shadows,” with powerful methods to bound the estimators used. We recast existing experimental protocols for continuous-variable quantum state tomography in the classical-shadow framework, obtaining rigorous bounds on the number of independent measurements needed for estimating density matrices from these protocols. We analyze the efficiency of homodyne, heterodyne, photon-number-resolving, and photon-parity protocols. To reach a desired precision on the classical shadow of an N-photon density matrix with high probability, we show that homodyne detection requires order O(N4+1/3) measurements in the worst case, whereas photon-number-resolving and photon-parity detection require O(N4) measurements in the worst case (both up to logarithmic corrections). We benchmark these results against numerical simulation as well as experimental data from optical homodyne experiments. We find that numerical and experimental analyses of homodyne tomography match closely with our theoretical predictions. We extend our single-mode results to an efficient construction of multimode shadows based on local measurements.more » « less
-
We generalize the notion of quantum state designs to infinite-dimensional spaces. We first prove that, under the definition of continuous-variable (CV) state t-designs from [Blume-Kohout et al., Commun.Math. Phys. 326, 755 (2014)], no state designs exist for t ≥ 2. Similarly, we prove that no CV unitary t-designs exist for t ≥ 2. We propose an alternative definition for CV state designs, which we call rigged t-designs, and provide explicit constructions for t ¼ 2. As an application of rigged designs, we develop a design-based shadow-tomography protocol for CV states. Using energy-constrained versions of rigged designs, we define an average fidelity for CV quantum channels and relate this fidelity to the CV entanglement fidelity. As an additional result of independent interest, we establish a connection between torus 2-designs and complete sets of mutually unbiased bases.more » « less
-
Random quantum circuits continue to inspire a wide range of applications in quantum information science and many-body quantum physics, while remaining analytically tractable through probabilistic methods. Motivated by an interest in deterministic circuits with similar applications, we construct classes of nonrandom unitary Clifford circuits by imposing translation invariance in both time and space. Further imposing dual unitarity, our circuits effectively become crystalline spacetime lattices whose vertices are swap or iswap two-qubit gates and whose edges may contain one-qubit gates. One can then require invariance under (subgroups of) the crystal’s point group. Working on the square and kagome lattices, we use the formalism of Clifford quantum cellular automata to describe operator spreading, entanglement generation, and recurrence times of these circuits. A full classification on the square lattice reveals, of particular interest, a “nonfractal good scrambling class” with dense operator spreading that generates codes with linear contiguous code distance and high performance under erasure errors at the end of the circuit. We also break unitarity by adding spacetime translation-invariant measurements and find a class of such circuits with fractal dynamics.more » « less
-
Abstract Open quantum systems have been shown to host a plethora of exotic dynamical phases. Measurement-induced entanglement phase transitions in monitored quantum systems are a striking example of this phenomena. However, naive realizations of such phase transitions requires an exponential number of repetitions of the experiment which is practically unfeasible on large systems. Recently, it has been proposed that these phase transitions can be probed locally via entangling reference qubits and studying their purification dynamics. In this work, we leverage modern machine learning tools to devise a neural network decoder to determine the state of the reference qubits conditioned on the measurement outcomes. We show that the entanglement phase transition manifests itself as a stark change in the learnability of the decoder function. We study the complexity and scalability of this approach in both Clifford and Haar random circuits and discuss how it can be utilized to detect entanglement phase transitions in generic experiments.more » « less
An official website of the United States government

Full Text Available